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Zonal (east-west) mean flow over the Andes
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Dashed line: 500 hPa, half of the atmosphere below!
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The Andes cordillera and the main low-level circulation patterns
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A few effects of the Andes on the atmospheric circulation
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Mean Annual Rainfall. Chilean stations.
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Two competing hypothesis
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Andean uplift leads to Atacama hyper-aridity
by producing a rain shadow

Atacama hyper-aridity contribute to Andean
uplift by...see next (Lamb and Davis 2000)
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ABSTRACT

The west slope of the central Andes exhibits a pronounced rainshadow effect. Precipitation between 15° and 27°S is
dominated by summer convective activity from Amazonia, and data analysis shows that the increase in precipitation
with elevation due to the rainshadow effect best fits an exponential correlation. Coupling with limited data from high
elevations suggests that the correlation is accurate to 4500 m above sea level (m a.s.l.) and perhaps to 5500 m a.s.l..
suggesting that increased precipitation goes unrecorded over the peaks of the western Cordillera. South of 27°S the
precipitation is dominated by winter frontal sources and shows no well-defined relationship with elevation. The core zone
of hyper-aridity in the Atacama Desert extends from 15 to 30°S at elevations from sea level to 3500 m a.s.l. Although
the Atacama Desert has existed since at least 90 Ma, it is considered that the initial onset of hyper-aridity was most
likely to have developed progressively with the uplift of the Andes as they reached elevations between 1000 to 2000 m
a.s.l. coupled with the intensification of a cold, upwelling Peruvian Current between 15 and 10 Ma. Also apparent in
the palaecogeographic record are subsequent fluctuations between (semi-) arid to hyper-arid conditions that were probably
largely controlled by changes in orbital and oceanic forcing. Copyright © 2003 Royal Meteorological Society.

5.3. Elevation forcing

Regional uplifts, such as the Andes, have been shown unequivocally to cause increasing aridity (Manabe
and Brocceoli, 1990; Ruddiman et al., 1997). At elevations of 1000 m the effects of topographic forcing begin
to be felt (Browning, 1980), with increasing effect by the time elevation has reached 2000 m (Hay and
Wold, 1998; Otto-Bliesner, 1998), and palacoclimate modelling of the Himalayas suggests that the impacts
on climate may develop progressively and in step with increasing uplift Zhiseng et al. (2001).
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Neogene climate change and uplift in the Atacama Desert, Chile

Jason A. Rech
Brian S. Currie
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ABSTRACT

The relationship between Andean uplift and extreme desiccation of the west coast of
South America is important for understanding the interplay between climate and tectonics
in the Central Andes, yet it is poorly understood. Here we use soil morphological char-
acteristics, salt chemistry, and mass independent fractionation anomalies (A'7O values) in
dated paleosols to reconstruct a middle Miocene climatic transition from semiaridity to
extreme hyperaridity in the Atacama Desert. Paleosols along the southeastern margin of
the Calama Basin change from calcic Vertisols with root traces, slickensides, and gleyed
horizons to an extremely mature salic Gypsisol with pedogenic nitrate. We interpret this
transition, which occurred between 19 and 13 Ma, to represent a change in precipitation
from =200 mm/yr to <20 mm/yr. This drastic reduction in precipitation likely resulted
from uplift of the Central Andes to elevations >2 km; the uplift blocked moisture from
the South American summer monsoon from entering the Atacama. The mid-Miocene Gyp-
sisol with pedogenic nitrate is located at elevations between 2900 and 3400 m in the Cal-
ama Basin, significantly higher than modern nitrate soils, which occur below ~2500 m.
Modern and Quaternary seils in this elevation zone contain soil carbonate and lack ped-
ogenic gypsum and nitrate. We infer that =900 m of local surface uplift over the past 10
m.y. displaced these nitrate paleosols relative to modern nitrate soils and caused a return
to wetter conditions in the Calama Basin by decreasing local air temperatures and creating
an orographic barrier to Pacific air masses.

Keywords: Atacama Desert. Andes. paleosols. Calama Basin. soil nitrate.

INTRODUCTION maintained through the existence of a strong

elevations above ~2800 m, but do not cause
rainfall in the central Atacama.

The Calama Basin is located on the eastern
margin of the Atacama, ~150 km from the
Pacific Coast at elevations between 2200 and
3500 m (Fig. 1). Precipitation in the center of
the basin (2200 m) is ~4 mm/yr, whereas
along the eastern margin (3350 m) precipita-
tion is ~50 mm/yr.

PALEOSOLS IN THE CALAMA BASIN
We examined Miocene strata and Quater-
nary landforms along the southeastern margin
of the Calama Basin for evidence of pedogen-
esis. Miocene gypcretes were first reported in
this region by Hartley and May (1998). We
identified Miocene and Quaternary paleosols
developed on substrates of alluvial fan and
flood-plain deposits, and basement bedrock.
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Genozoic climate change as a possible
cause for the rise of the Andes

Simon Lamh' & Paul Davis*

lf)e’pﬁmnmr of Earth Sciences, Parks Road, Oxford, OX1 3PR, UK
Department of Earth and Space Sciences, University of California, Los Angeles, California 90095, USA

Causal links between the rise of a large mountain range and climate have often been considered to work in one direction, with
significant uplift provoking climate change. Here we propose a mechanism by which Cenozoic climate change could have caused
the rise of the Andes. Based on considerations of the force balance in the South American lithosphere, we suggest that the height
of, and tectonics in, the Andes are strongly controlled both by shear stresses along the plate interface in the subduction zone and
by buoyancy stress contrasts between the trench and highlands, and shear stresses in the subduction zone depend on the amount
of subducted sediments. We propose that the dynamics of subduction and mountain-building in this region are controlled by the
processes of erosion and sediment deposition, and ultimately climate. In central South America, climate-controlled sediment
starvation would then cause high shear stress, focusing the plate boundary stresses that support the high Andes.

Lamb and Davis; Nature 2003
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Age (Myr ago)

If Atacama hyper-aridification leads to Andean uplift, what caused

the increase in dryness over Atacama during the Miocene?
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TCoaling of
Paru—Chile

currant

.LﬂED [3{”3
a 5 4 3 4 1 a
¥ T
g —
4 Fli . i
] a West Antarctic
= +— ice-sheet
s = |ntensification aof
10 3 Aslan monsoon
5 IEary Antaretie lce-sheet
1 Miocens 5 ) . S
- ] | Mid-Miocene climatic
o optimum
20 E T
3
2 WE
'Ei"_MI—'I glaciation
o Late Oligocens
Oligocens B warming
30 %
o
— EII—E}H glaciation
40 A
Eocene
a0 Early Eocene
] climatic optimum
go | Palasocens
i)

winwido aiEuws sussog Aeg je anpedw

5 Bolivian Andes at 20° 5 MNASCA-SAM
b Convergence velocity
: i at 20° 5 jem yr—')
% Elevation (kmj) H-Ehln[i—-ﬂrn
w0 1 2 3 4 shortening a ? 1::] 1.5 50
HIH 1
Lirderthrusting
of Brazilian
Altiplano shield in
sub-Ardes
10~
‘n.,_‘_\ !

Palasol|oras

Eastarn Cordillera.
& Altiplanc

Flat Slah

e & Mo Arc

Onset of
significant
denudation
in Eastarn
Cordillera

Al

Fig. Lamb & Davis, 2003
Mod. Zachos et al., 2001




Conceptually, both Andean uplift and SEP cooling may
increase dryness of the Atacama desert...it would be
nice to use a “simple” climate model to study these two
conditions.

We use PLASIM, an Earth System Model of
Intermediate Complexity from Hamburg University:

« Atmospheric component: PUMA
« Simple slab model for SST and Sea Ice
« SIMBA for biosphere

We performed 30 year long simulations altering one
Boundary condition at a time




Model Validation
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Model Validation

Feature Atmos-Only Full
Cold tongue Of course weak
Warm pool Of course Small
ITCZ Ok, too wide Too strong, too zonal
South American Monsoon Yes Yes
SH Storm Track Yes Yes
Orographic precipitation Yes Yes

Subtropical deserts

Subtropical anticylones

SPCZ

SACZ

Yes, but too small

Yes, but too wide

Yes

Ok, but too short

Yes, but too small

Ok, too wide

No

Yes




Motivated by the previous wisdoms in the paleo-climate
and geological communities, we set up a numerical
experiment using PLASIM. 30 years for each experiment.

Experiment Topography Ocean/lce model
Control 100% Yes
Atmos Only 100% No
0.1Topo-f 10% everywhere Yes
0.3Topo-f 30% everywhere Yes
0.5Topo-f 50% everywhere Yes
0.7Topo-f 70% everywhere Yes
0.9Topo-f 90% everywhere Yes
0.3Topo-A 30% everywhere No
0.3Andes-f 30% South America Yes

0.3Andes-A 30% South America No




Topography Experiments

Long-term meanDJF 900 hPa wind
O.3*Topo (red) and Control (blue)
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Topography Experiments

0.3*Topo minus Control (DJF)

. 900 hPa winds and Precip 2w% Precip (AP/PC)
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Topography Experiments

DJF Precipitation
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f*Topo minus Control (DJF)
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Topography Experiments
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Deep convections warms the tropical /

subtropical tropospher, producing a
warm-core upper-level anticyclone
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Topography Experiments

DJF 400 hPa South American Region (60°S-20°N, 220°-360°E)
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SST Experiments: SST(gp) only

Uniform SST minus Control SST/SAT
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SST Experiments: SST(gp) only

Sea Level Pressure: Uniform SST minus Control

soN {7 £z
30N -
EQ A
3051

sosd




SST Experiments: SST(gp) only

Rainfall; Uniform SST minus Control
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20M

R>100 mm/month

SST Experiments: SST(gp) only

U-SST minus Control (DJF)
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Summary

* The Andes | cts thefa{mospherlc circulation in
range of temporal and spatial scales, both at tropical a
extratroplcal latitudes

* Desplte its |mportanca..:ghere are too many gaps in our
undérstanding (and hence rel tively few. papers on these

4 e

subjects), in part because the dramatic¥ack < of in-situ data

\" The ' Andes does organize precipitationt m South America
and is responsible for the existence of a low I__evel Jet that feeds
convection at subtropical latitudes east of' ge Andes

* Preliminary experiments show that ‘remova :”’ of the Andes
doesn’t increase rainfall over the Atacama desert Hyper-
aridity there is much likely produced by the col'd SST along the
coast. g

e 90°W 30°W




	Meteorology & Climate Papers on the Andes Cordillera

