Atmospheric Rivers impacting the West Coast of South America

René D. Garreaud & Maximiliano Viale

Geophysics Department, Universidad de Chile Center for Climate and Resilience Research (CR2)

Collaborators: Raul Valenzuela, Deniz Boskurt Marty Ralph, Roberto Rondanelli

International AR Conference, La Jolla-CA, June 26, 2008

Monday night, winds at 300 hPa

Monday night, 3-hr Precipitation What did I drink?

Monday night, PW+GOES-IR Ok...it wasn't the wine, it was an AR

Atmospheric Rivers impacting the West Coast of South America

- Background (Falvey & Garreaud 2007)
- How did we study ARs without knowing ARs? (Garreaud 2013)
- ARs and extreme events (Valenzuela & Garreaud 2019)
- ARs climatology for the SE Pacific (Viale et al. 2018)
- Impact of local SST anomalies (Bozkurt et al. 2019)
- Come to join us....

Background

Central Chile: subtropical (30-40°S) west coast of South America, bounded by the Andes cordillera (3-5 km). MAP from 100 to 1500 mm/year. Strongly impacted by ENSO

Typical winter (JJA) storm in central Chile: Cold front rooted in a midlatitude depression

¿What synoptic scale variables are a good predictor for event-accumulated rainfall? U×q at 850 hPa

Falvey & Garreaud 2007

Precipitation events also differ in their temperature Implications for the freezing level height Garreaud 2013

Hydrological Impacts

GOES12 IR2 + CFSR 500 hPa winds

GOES12 IR2 + CFSR 500 hPa winds

950 hPa winds, temperature and precipitation 18Z 11 Jul 2006

Large scale composite analysis: IPW & 200 hPa wind

Conceptual Model

- Rainfall at and behind cold front
- H0 < 2500 m ASL
- Prefrontal rainfall up in the Andes
- Well defined baroclinic wave
- Deep cyclone off southern Chile
- NW flow aloft
- Strong topographic blocking
- Northerly low-level jet

- Rainfall well ahead cold front
- H0 > 2500 m ASL
- •Strong W flow aloft
- Conditionally unstable environment
- Reduced topographic blocking
- Wide, deep layer of ascent
- Weak trough farther south
- Blocking anticyclone farther west
- TransPacific zonal jet and troposheric river

Mean IWV for rainy days ≥ 35.0mm n=22) 300hPa Isotacs (min:30m/s, interval:3 m/s)

108°W

102°W

96°W

90°W

84°W

78°W

72°W

66°W

Valenzuela & Garreaud In preparation

1	Impacts of Atmospheric Rivers on Precipitation in Southern South	
2	America	
3		
4	Maximiliano Viale *	
5	Instituto Argentino de <u>Nivología</u> , Glaciología y Ciencias Ambientales (IANIGLA), CCT – CONICET -	Modified Guan and Waliser (2015) approach
6	Mendoza, Argentina, and Departamento de Geofísica, Universidad de Chile, Santiago, Chile.	Uses CFSR 2001-2016
7 8	Raúl Valenzuela and René D. Garreaud	IVT as a key variable
9	Departamento de Geofísica and Centro del Clima y la <u>Resiliencia</u> , Universidad de Chile, Santiago, Chile.	
11	F. Martin Ralph	IVT gridded field for i-th time
12	Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University	
13	California, San Diego, California, USA.	IVT Threshold check
14		14 1 (76 W, Iac, 1-01) > 14 1 (76 W , Iac, 110/10/)85th-pretile
16	Submitted to Journal of Hydrometeorology	Isolate a continuous object with IVT > IVT85th
17	Januarv 2018	Obtain the axis of the object
		Check linkage of the object with a frontal zone
		Check the landfall of the object
		Obtain the length and width of the object
		Length check (> 2000 km)
		Narrowness check (length/area > 2)
		There is an AR

15 year landfalling AR climatology Viale et al. 2018

15 year landfalling AR climatology

Why is the impact of AR i so uniform along the coast?

ENSO – Precipitation in Central Chile

SST Anomaly 1997

PSA

ENSO – Precipitation in Central Chile

SST Anomaly 1997

ENSO – Precipitation in Central Chile

SST Anomaly 1997

Deniz Bozkurt et al....201X

Deniz Bozkurt et al....201X

Landfalling AR – Global Survey

Modified Guan and Waliser (2015)

Landfalling AR – Global Survey Number of AR paper per region*

Modified Guan and Waliser (2015)