VOCALS Coastal Component Workshop Santiago, Chile. 3-4 April 2007

A few specific questions in coastal meteorology

René Garreaud, José Rutllant, Ricardo Muñoz, Jorge Carrasco, Mark Falvey, Laura Gallardo, Lionel Renault **POCS (drifting from the coast?) Continental air pollution** Solid-broken SCu deck **Coastal diurnal clearing** Persistent cloudy regions Synoptic-scale clearing **AQUA VIS Image** 50% Coastal Meteorology here

...the remaining 50% of coastal meteorology

QuikScat surface wind speed climatology (2000-2005)

Among several interesting features of the sfc. ws field, we focus on the coastal jet off central Chile and the low-speed area around 18°S. Also notice the wind maximum @ 15°S only present during JJA

Simulated (MM5) structure of the coastal jet

Garreaud and Muñoz 2005

WHOI Stratus-2004 Cruise

Steady-state Dynamics

FIG. 8. Mean vertical profiles of terms in the budgets of (a) zonal momentum, (b) meridional momentum, (c) liquid water potential temperature, and (d) turbulent kinetic energy, for point at 30.2°S, 72.8°W.

SQ1-Climatological near-coastal wind máxima around 30°S:

Jet-structure in mean field produced by frequent (weekly) jet events

SQ3. Coastal Jet under Clear Skies...Why? (+300 W/m² reaching the surface)

30S 73.5W 🔵

Coastal clearing could be produced by offshore advection of dry air and/or enhanced subsidence...what are the relative roles?

SQ4. Impacts of Jet Events on SST

Renault et al. 2006

Impacts of Jet Events on SST

Wind, SST and SST anomalies

Renault et al. 2006

To understand/quantify the response of the surface ocean to coastal jet events we propose ship-borne observations, aircraft observations (at onset, height and demise of the event), as well as modeling experiments (in progress, WRF+ROMS)

Renault/Falvey

Rob Wood, 2006

MM5 simulation, Sep-Oct 2003, single domain, 30 km hor. res. (blue dots)

120-hr backward and forward 3-D trajectories were calculated for 920 selected points (red dots), every 6 hr at 6 vertical levels (990, 950, 900, 860, 830, 800 hPa aprox.)

Garreaud, Falvey, Muñoz

Trajectory information (lat,lon,pres,temp,rh) was saved every 3 hours. Quite a bit of data: $6 \times 920 \times (24/6) \times 50 \times (120/3) \times 5 = 220$ Mill !!

Show for each starting point (p_0 =900 hPa), the proportion of trajectories that have passed over continental topography at above surface altitudes of less than 2000 m

MM5 Model Results for Sep-Oct 2003 (Muñoz 2007)

Coastal gradient of pressure exhibits a large diurnal cycle off N. Chile Afternoon decrease in sfc. pressure associated with subsidence diurnal cycle How the AMBL reacts to the diurnal cyle of W?